

ADVANCED PROCESS CONTROL FOR HIGHER PRODUCTIVITY AND ONLINE QUALITY CONTROL

Dr. Christian Lauter, Klaus-Peter Jaquemotte and <u>Dr. Nikos Pantelelis</u> Carbon Rotec GmbH and Synthesites SNC **Wind Turbine Blade Manufacturer 2017** Düsseldorf, December 14th 2017

Project Overview and Objectives

Molds and

processes

Advanced process control for higher productivity and online quality control

Develop and validate theoretical models

- Simulation of heat flow
- Prediction of resin reactivity and glass transition temperature

Optimize manufacturing processes

• Designed resin flow, heating, curing and cooling cycles depending on blade layup and environmental conditions

Online Tg monitoring with a robust sensor system **Sensor systems**

- Tests under laboratory and production conditions
- Software should be capable of estimating the on-going Tg at an accuracy similar to DSC

Intelligent molds and processes

Outlook: Industry 4.0 for Rotor Blade Manufacturing

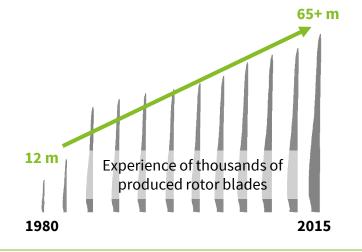
- Integration of models, sensors and software into mold, heating and process control
- Implementation of resin flow simulation

PROJECT PARTNERS

Carbon Rotec

Blade manufacturing and advanced production equipment

Synthesites Intelligent monitoring and sensor systems for composite manufacturing


CARBON ROTEC: 35 Years of Expertise with Composites

CARBON ROTEC is one of the largest independent producers of rotor blades for wind turbines of the multimegawatt-class in Europe. For over 35 years, high-quality composite structures have been developed, manufactured and maintained.

- Headquarter in Lemwerder near Bremen
- Total area: 1.4 km²
- Production area: 47,000 m²
- Own research and development department inculding an application laboratory

- Production capacity of approximately 1,000 blades p. a.
 - Experience in the realization of rotor blades, molds, commercial vehicle parts, aircrafts, bridges, covers for sewage treatment plants and various prototypes

CARBON ROTEC: Product and Service Portfolio

World leader in intelligent process monitoring and control in composites manufacturing for aerospace, automotive, wind energy and industrial applications

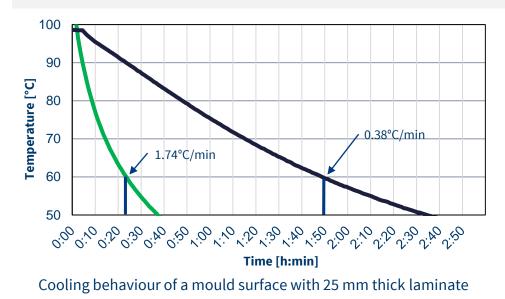
HQ: Greece , 2 branches: Belgium and the UK

Recent Achievements

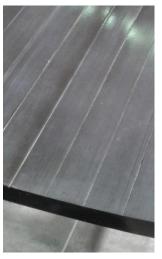
- Involvement in the manufacturing of the most advanced CFRP wing for the C-Series at Bombardier, Belfast.
- Online Tg module with 8 cure sensors installed at NCC, UK.
- Involved in the online cure monitoring of the Elium TP resin with Arkema

R&D References

Indicative applications


OPTIMIZED BLADE MANUFACTURING PROCESSES BY DESIGN OF HEATING, CURING AND COOLING CYCLES

Approaches for Process Optimizations



Cycle times **Robustness** Quality Costs **Infusion Processes Curing Cycles Materials/Structures** Optimization of infusion strategies Infused carbon girders • Achieve proper glass transition temperatures in short cycle times Reduction of waste, e.g. green mesh Carbon girders made of • • pultrusion profiles Development of flow biax Models for resin reactivity ٠ • Prefab components Advanced sensor technologies • Designed heating and cooling cycles •

Optimized infusion process

Infused carbon pultrusion profiles

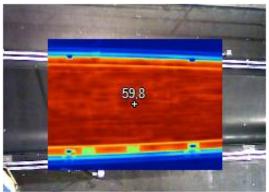
In general:

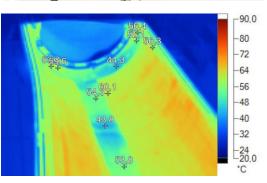
- High heating rates and high temperatures on mould surface
- Individual heating areas according to blade design
- Individual curing program for each heating area
- Optimized insulation regarding to energy efficiency

During infusion:

- Homogeneous temperature distribution
- Proper temperature / heat depending on layup
- Short time to achieve infusion temperature

During curing:

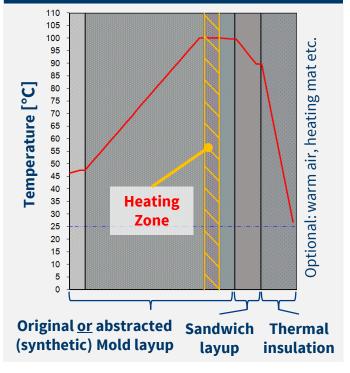

- Individual heat up ramps, temperatures, staring times and duration of heating depending on layup and exothermal reaction
- Fast reaction and short time to achieve curing temperature


During bonding operations and demolding:

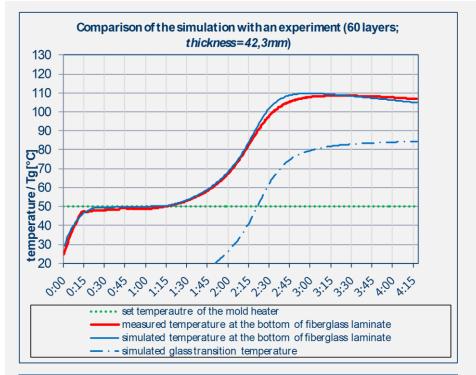
- Fast heat up and cool down of layup in bonding zones
- Moderate temperature in other areas (no-bonding zones)
- Homogenous temperature distribution in the blade during demolding

Advanced production equipment is the basis for high an efficient and high quality blade production

Advanced Theoretical Models



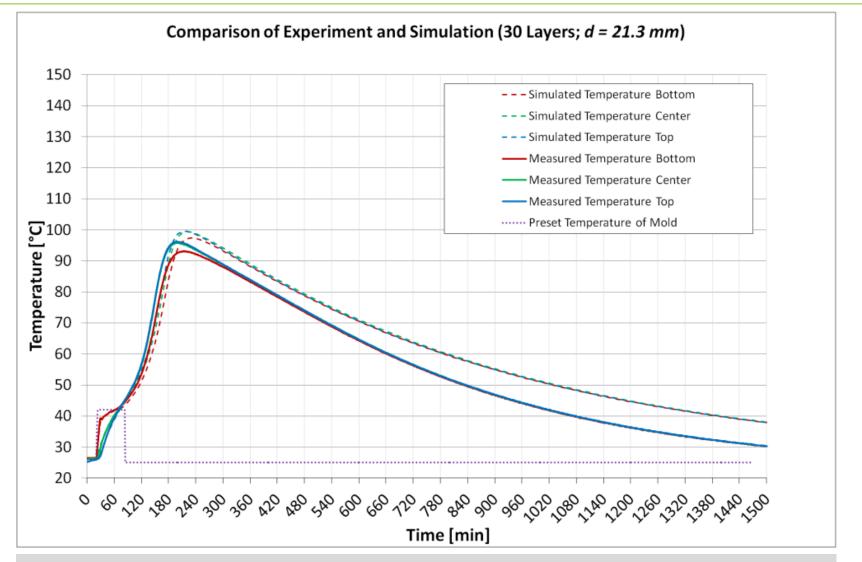
Material characterizations


Theoretical models for resin reactivity

$$\frac{dp}{dt} = A \cdot e^{-\frac{E}{RT}} \cdot f(p, n, a)$$

Calculation of the temperature distribution in mould and lay-up

Application of the model



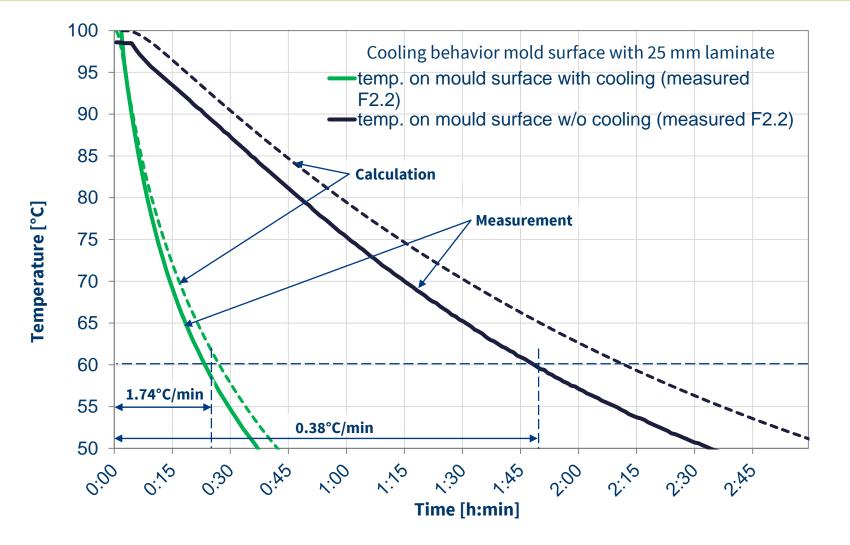
Position	T _G -Measurement	T _G -Simulation	
Bottom	82,2	84,3	
Тор	84,6	84,8	

Design of curing procedures including resin reactivity leads to optimized curing cycles

Optimization of Heating up and Curing Cycles

Simulations cover mold and blade layup, greenmesh, insulation materials etc.

Optimization of Heating up and Curing Cycles



Prediction of individual heat flow depending on local blade layup

Optimization of Cooling down Cycles

Reduction of cycle time by appr. 1.5 hours by designed cooling cycles

IMPLEMENTATION OF ADVANCED SENSOR SYSTEMS

Optimold Cure, viscosity, resin quality check

Real-time measuring of

- Resin's electrical resistance (from 0.1 MOhm up to 50 TOhm)
- temperature (pt100 sensor with 0.5°C accuracy) Input of external signals e.g. pressure sensors

process monitoring sensor = electrical resistance + RTD sensors

Inline sensor

High Temp RTM

- Resin arrival
- Viscosity rise
- Gelation
- End-of-cure

- VI and RT cure
- Resin arrival
- Viscosity rise
- Gelation
- End-of-cure

- Avoid pipe cleaning
- Adjust cycle
- Mixing ratio check

Pot sensor

- Mixing ratio
- Resin Quality
- Resin aging
- Adjust cycle

New

Vacuum Bag **Durable Sensor**

OptiFlow Resin arrival, temperature

optiflow

Curved

Durable

New

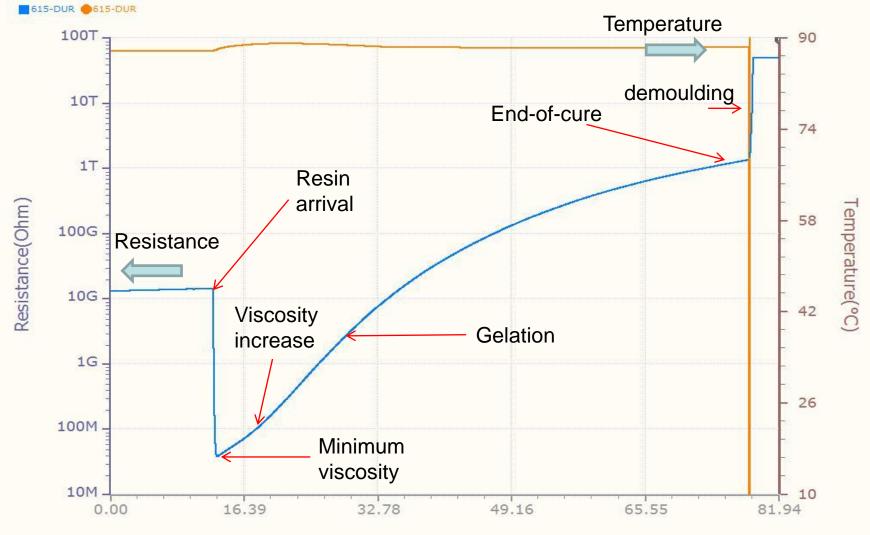
- 4 temperature and resin arrival sensors
- Resistance-based measurements and RTD temperature
- Continuous connection checking
- One relay output for process automation

- flat areas
- possible mark

 ideal for vacuum infusion in oven/ autoclave (gates, pipelines, pots etc.)

- Curved surfaces
- In the laminate for development

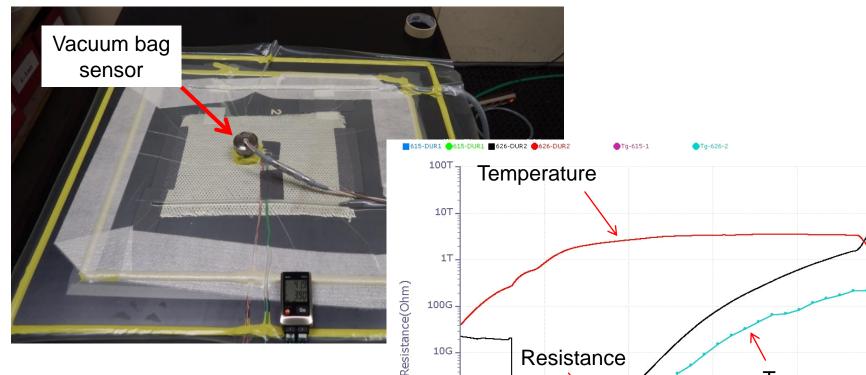
FloWire

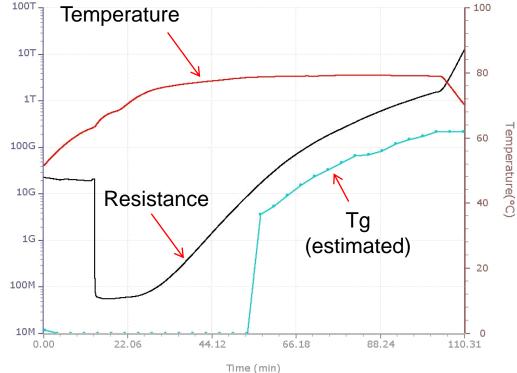

sensors

- Over the peel-ply
- Suitable for very long parts
- no extra protection for Carbon

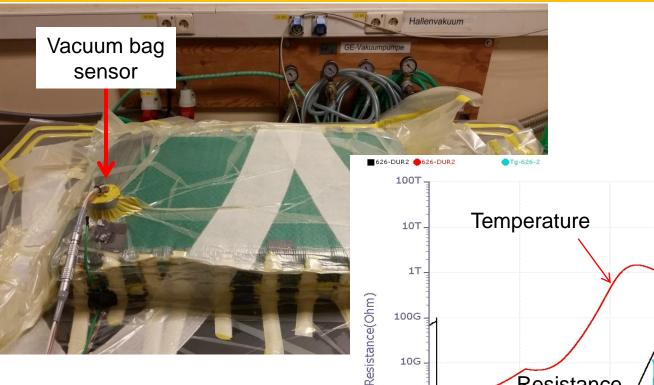
Fibre Preforms

RIM035-RIMH037 cure cycle @90°C as measured with Optimold

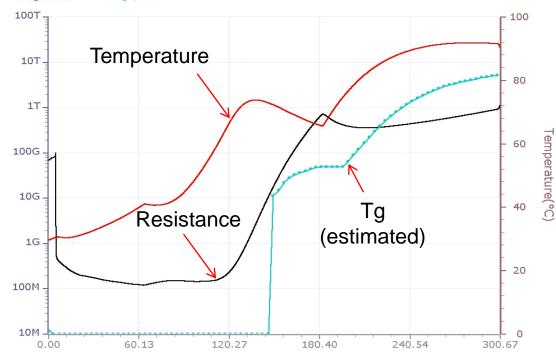



Time (min)

Lab scale production simulation trials



Simulating Isothermal cure cycles in the lab



Lab scale production simulation trials

Simulating non-Isothermal realistic cure cycles in the lab

Time (min)

Field Trials

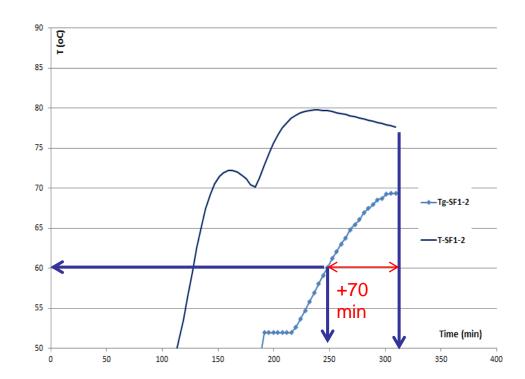
New vacuum-bag durable sensor

Online Tg estimation at DSC accuracy

Overview of various isothermal and realistic test cases and the difference between Tg estimated online with the ORS software and T_g measured right after demoulding by DSC

Tg online estimation is within the DSC accuracy

	Trial	Duration [h]	T₀-ORS (°C)	Tg- DSC (°C)	Difference (°C)
Isothermal	80DV1	3	73.17	73.34	-0.17
	80DV3	2.5	70.30	70.91	-0.61
	80DV4	2.5	73.45	72.49	0.96
	80-120'	1.92	66.96	66.02	0.94
	80-90'-1	1.50	62.04	61.80	0.24
	80-90'-2	1.50	65.52	65.21	0.31
	80-D2-2	1.50	61.88	60.59	1.29
	60-260'	4.33	55.02	56.51	-1.49
	70-190'	3.17	64.92	65.39	-0.47
	1.61				
	2.42				
	TEB1-1		61.37	59.54	1.83
	TEB1-2		69.36	70.93	-1.58
Non-isothermal	TEB2-1		60.00	58.64	1.36
	TEB2-2		70.02	70.30	-0.28
	LESW1-1		76.97	74.35	2.62
	TESW1		71.34	69.18	2.16
	Shell1-1		80.36	78.92	1.44
	Shell1-2		75.72	77.83	-2.12
	Shell2-1		79.60	77.70	1.89
	2.15				
	1.26				



Shorter Cure Cycles

23

Using the new sensor shorter cycles were achieved at the labscale trials

Curing Temp °C	Time to cure (min)	New Time to cure (min)	Reduction (%)
60	360	260	28
70	240	190	21
80	150	120	20
Real case	320	250	22

But also in strongly non-isothermal production cases

Checking Resin quality and Mixing Ratio

Just before injection to identify resin problems

Steps:

- 1. Fast curing of resin samples
- @110°C and 140°C
- 1. identify resin problems automatically
- 2. Proceed with injection safely

SUMMARY AND OUTLOOK

Summary and Outlook

Theoretical models build the basis for a holistic process and mold development

- Simulation of heat flow in the mould with dry fabrics and wet /stiff laminates
- Prediction of resin reactivity and behavior
- Development of degree of curing and glass transition temperature during the process

Advanced production tools enable significant cost and time savings

- Designed heating, curing & cooling cycles depending on blade layup and environmental conditions
- Individually controlled and tempered heating fields

Online Tg monitoring with a robust sensor system

- Tested successfully under laboratory and production conditions and environment
- Online Resin State software is capable of estimating the on-going Tg at an accuracy similar to DSC

The **sensor system** allows the wind blade manufacturers to:

- Shorten cure cycles
- Enhance quality control and production traceability
- Optimize the production in real-time

Further developments towards a comprehensive Industry 4.0 approach

- Full integration of models, sensors and software into mold and heating control
- Implementation of resin flow simulation

esi

5

ocess

Mold and

Sensor

gen

Intel

tem

Thank you for your attention!